
www.manaraa.com

Pedagogical Tools for Distributed Systems
MASTERS PROJECT REPORTpresented toDepartment of Computer ScienceMichigan Technological Universityin Partial Ful�llment of the Requirementsfor the Degree ofMASTER OF SCIENCE IN COMPUTER SCIENCE

byMeghana Gothemsgothe@mtu.edu

MICHIGAN TECHNOLOGICAL UNIVERSITY2000

www.manaraa.com

This project, \Pedagogical Tools For Distributed Systems", is hereby approved in partial ful�llmentof the requirements for the Degree of MASTER OF SCIENCE IN COMPUTER SCIENCE.
DEPARTMENT of Computer Science
Thesis Advisor Dr. Jean MayoDepartment Chair Dr. Linda OttDate

www.manaraa.com

AcknowledgmentsI would like to express my sincere gratitude to my advisor, Dr. Jean Mayo for her advice andsuggestions and without whose support and encouragement, this project and report could neverhave been �nished.I also thank each of my committee members, Dr. Linda Ott, Dr. Adrian Sandu, and Dr. MangalamGopal(Mathematics Department), for their time and support. Special thanks to Munish Mehta forhis guidance and constant encouragement.

www.manaraa.com

AbstractTeaching a distributed system class becomes a di�cult task when the student communityis from a varied background. These systems are complex, as they are distributed across thenetwork of component processes. A majority of the students have a sequential programmingbackground. Hence, distributed systems concepts pose a challenge of re-learning, making theteachers job all the more di�cult. Furthermore, distributed systems rely on message passingfor communication between component processes. The large amount of system speci�c networkinterface detail obscures the actual concepts. Tools that attempt to eliminate this obscurity areneeded. The students are introduced to numerous protocols, which form the basic foundation ofdistributed systems programming. Shortage of time prevents students from implementing themall. A simulation of the protocols which can be used by the students for understanding is a needof time.With this motivation, we have implemented a tool which provides certain communicationprimitives and some important distributed system protocols. The communication primitiveswill provide an easy interface that can be used by the students in their assignments. Protocolexecution dumps will enable the students to correlate to the topics taught in class.

www.manaraa.com

Contents1 Introduction 12 Related Work 23 System Model 44 Background Information 54.1 Cuts . 64.2 States . 64.3 Stable Predicate . 75 Project Work 85.1 Control Process and Initialization . 85.2 Message Passing . 105.3 Basic Protocols . 145.3.1 Global Snapshot . 145.3.2 Mutual Exclusion . 175.3.3 Termination Detection . 205.3.4 The Byzantine Generals Problem and Agreement Protocol 246 Future Work 297 Conclusions 30List of Figures1 Time-Space Diagram of a Distributed System with 3 processes 52 Proposed Model for Project Implementation . 93 A Single Token Conservation System . 154 An Example For Termination Detection Algorithm 215 An Example For Byzantine Generals Protocol Algorithm 266 Alogrithm For Byzantine Generals Agreement Protocol 27

www.manaraa.com

11 IntroductionA distributed system is a set of processes which do not share a common clock or common memory,and which communicate via message passing. The activity of each process in the computation ischaracterized as the execution of a sequence of events. The events are comprised of sends, receives,and internal events (events that are local to a process and change the state of that process). Asystem is said to be distributed if the message transmission delays are not negligible compared tothe time interval between events in a single process. The ability to analyze the behavior of sucha system is essential for various stages of its development like designing, testing, and debugging.The inherent complexity of distributed systems makes the above mentioned tasks di�cult.In general, the students taking the classes in distributed systems are from varied backgroundsand �nd it di�cult to grasp the concepts of distributed systems. Programming assignments arethe best means of making the students understand the important concepts of distributed systems.However, the large amount of detail needed for the underlying network interface routines obscuresthe conceptual understanding within the programming exercises. A set of communication routinesthat will ease this burden on the students is needed.Distributed systems present to the students the challenge of re-learning many concepts. Simpleissues like �nding the state of a computation, enforcing mutual exclusion, and detecting terminationare tremendously complicated. A set of routines implementing the protocols that address the issueswithin distributed systems will help the students understand, and facilitate the teaching process.However, in the short duration of an academic term, programming of all the di�erent protocols isa very di�cult task. The pedagogical tools system we have implemented will provide the studentswith routines that they can use to aid their learning.Our project provides routines that implement four protocols : termination detection by Dijkstra,

www.manaraa.com

2et al. [2], Chandy and Lamport's distributed global snapshots [1], Byzantine Generals agreementby Lamport, et al. [5], and Ricart and Agrawala's mutual exclusion [10]. Along with these, we haveimplemented message passing primitives needed for the communication between processes executingthe above protocols. The primitives support the following types of message passing: deterministicsynchronous send-receive, deterministic asynchronous send-receive, nondeterministic synchronousreceive, and nondeterministic asynchronous receive. We are also providing the ability to generatetraces of the execution of the protocols, which will be handy for classroom discussions.2 Related WorkExtensive research is being done in the �eld of distributed systems. The number of studentstaking courses in distributed systems and networking has increased. This makes it imperative tofocus on work related to the development of tools to aid in their learning. The protocols and themessage passing abstraction that we have provided form part of the basics of distributed computingconcepts. Most of the currently available tools that attempt to provide similar implementationsare customized for a particular application and cannot be incorporated into our pedagogical tool.Some tools of particular interest are :� Didyma or Netsim [8] is a graphical network documentation and monitoring tool based onICMP (ping) and TCP ports. The facilities the tool provides include: a graph of the statusof the nodes in a network along with their history, raising of an alarm with a mail noti�cationif an event (i.e. a change in status of a node) occurs, and output of the turnaround times inthe network. One can also view the status of a network remotely with a browser using theDidyma HTTP service. However, this tool does not provide any functionality needed for thetool we are trying to provide.

www.manaraa.com

3� H.Jakiela describes the use of a simple visualization technique to resolve di�cult queuingproblems and system overload in a large distributed system [3]. Response time problemscaused by lock contention, queuing delays, and soft faults can be easily identi�ed with thistechnique. However, this tool also does not provide the protocols or the message passingroutines that we are trying to provide in our tool.� One of the tools which is similar to our needs is \DAJ: Toolkit for Distributed AlgorithmsSimulation in Java", written by Wolfgang Schreiner [12]. The toolkit implements some proto-cols, including two of the protocols needed by the project: termination detection and globalsnapshots. It also provides a graphical interface in Java for visualization of the protocol ex-ecution. An applet shows the simulation of the termination detection protocol on a networkwith six nodes. When a node is clicked, its state (active or passive), and its color are dis-played. When a channel is clicked on, its state, either empty or non empty, is displayed.A simulation of taking a global snapshot is shown via an applet using a banking system ex-ample. When a node is clicked on, the node status in the form of the current balance andwhether the node is taking a snapshot is displayed. The number of marker messages neededto be received by a node, and a snapvalue (value of the local balance after snapshot wasinitiated until all the markers are received) is also displayed. A constant number of nodes isused. The tool does not provide vector or Lamport logical timestamp information. Unreliablemessage passing is also not supported. Further, it does not implement all the selected proto-cols. Finally, the application could not be be used by our implementation because we haveselected C++ for our tool because our tool is a part of a bigger \Concurrent Computing"project.

www.manaraa.com

4� Another tool, similar to the above and also in Java, is \Visualization of Randomized Dis-tributed Algorithms", implemented by Minas Lamprou and Ioannis Psarakis. The packagecalled "Simjava" [6] is used to simulate the execution of a set of randomized protocols such asLeader Election in a Ring, Dining Philosophers, and Byzantine Agreement. However, out ofthese, only the Byzantine Generals Agreement Protocol is of use for our purpose. The appletprovided visualizes Ben-Or's asynchronous randomized distributed solution to the ByzantineGenerals problem, in the case of one traitor and �ve loyal generals. We have implementedthe agreement protocol proposed by Lamport, et.al. Simjava is implemented in Java, andhence does not suit our needs. Further, Simjava does not provide tools for unreliable messagepassing, or for developing user applications which use the protocols.3 System ModelWe consider a distributed system comprised of a collection of sequential processes fP1; P2; ::::::; Png,and a network capable of implementing unidirectional communication channels between pairs ofprocesses for message exchanges. Channels may be reliable (no messages are lost in transit) orunreliable. Reliability is provided by the message passing primitives. The delivery of messagesmay be done out of order, i.e., two messages from a process may not be received in the sameorder they were sent. The communication network is assumed to be strongly connected (but notnecessarily fully connected), i.e., every process can communicate with every other process directlyor through intermediary processes. We assume that there exists no bound on the relative speedsof the processes, and message transmission delays are unpredictable. This system is realized inhardware by using a cluster of workstations.

www.manaraa.com

54 Background InformationThe following information provides some background in the form of de�nitions that are needed tounderstand the details and the importance of the message passing primitives and protocols thatare to be implemented.Consider a distributed system D as described in the previous section. Let Ei denote the setof events occurring in process Pi, and let E = E1S ... SEn denote the set of all events of thedistributed computation. Here it is assumed that each Pi is sequential, and that the events in Ei areordered by the sequence of their occurrence. Figure 1 shows a time-space diagram of a distributedsystem with three processes. The horizontal arrows represent increasing time and circular dotsrepresent the events. The order of occurrence of the di�erent events in the distributed systemneeds to be deduced. Lamport established the \happened before" relation to order local events ofa process globally in a distributed system [4]. The \happened before" relation is denoted by thesymbol \!" in the of remainder of the document.
P1

P2

e11 e14

e21 e22 e23

e31 e32 e33 e34

P3

C1 IC2

c21

c12 c22

c23 e13

e12

c11

c13

Figure 1: Time-Space Diagram of a Distributed System with 3 processes

www.manaraa.com

64.1 CutsA cut C of an event set E is a �nite subset C � E such that e�C and e0 ! e, where e and e0 areevents in the same process, implies e0�C. A cut event ci is an event in the cut that does not alterthe state of the process. Figure 1 shows the time-space diagram of a distributed system. Cuts areshown by the dotted lines and the cut events are �lled.A consistent cut of an event set E is a �nite subset C � E such that e�C and e0 ! e) e0�C.There is no restriction that e and e0 are in the same process [7]. In Figure 1, C1 gives a consistentcut, and IC2 is an inconsistent cut.4.2 StatesThe state of a process is de�ned as the value of all variables used by the process. The state ofa channel is de�ned as the sequence of messages sent along the channel excluding the messagesreceived along the channel.A global state of the system D is a set of local states, one from each process Pi, and the state ofeach channel Ci. The initial global state is one in which the state of each process is its initial stateand the state of each channel is the empty sequence. The occurrence of an event may change theglobal state.A fundamental property of the distributed system is the lack of a global system state. Some of thefactors that prevent an observer from determining the global state are as follows.1] A process can only keep track of the messages it sends or receives, and thus only its own state.2] The systems lack a common clock.3] Modern systems are complex with unpredictable problems like CPU contention, interrupts, andpage faults.4] In a distributed system, communication is not instantaneous due to propagation delays, con-

www.manaraa.com

7tention for network resources, and lost messages that require retransmission.In most situations, instead of determining the exact global state of the system, a global view, calleda global snapshot, that is consistent with causality is determined [9]. Events related by the hap-pened before relation are said to be causally related, as one event may have caused the occurenceof the other.A global snapshot of the system is de�ned as a state of the distributed system that might haveoccurred [11]. A global snapshot is comprised of the set of process states at the time the cut eventsof a consistent cut are executed, as well as any outstanding messages in the comunication channels.Snapshots are useful for application monitoring and control, e.g. deadlock detection, and detectionof token loss.4.3 Stable PredicateLet y be a predicate function de�ned on the global states of a distributed system D such that y(S)is true or false for a global state S of D. The predicate y is said to be a stable predicate of D ify(S) implies y(S') for all global states S' of D reachable from global state S of D. Thus, if y is astable property, and y is true at a point in the computation of D, then y is true at all later pointsin that computation [1]. For example, if a system has terminated, the predicate corresponding tothe detection of termination of the system will be true, and will remain true. Hence, the predicateis called a stable predicate. The processes in many distributed computations are considered to becomprised of a sequence of phases. Each phase is composed of an active part, where useful workis done, and a stable part, which indicates the end of a phase. This is analogous to a sequentialprogram looping to produce some result, until successive iterations produce no change. Detectionof stability is essential for terminating one phase and starting the next.

www.manaraa.com

85 Project WorkThis section describes the details of the project work, and the details about the message passingprimitives and protocols that have been implemented. The project consists of the following partswhich are described in the sections below.1. Implementation of the control process and intialization routines for the remaining processes.2. Implementation of message passing routines.3. Implementation of the protocols.5.1 Control Process and Initialization1. ImplementationAs the �rst step of the project, a control process program has been implemented. Thisprogram performs important functions during initialization. The control process is bound toa port and it acts as a server. The objective of having such a process is to be able to startthe distributed application from a single machine. The user can invoke this program fromthe command line, and will have to provide, as command line argument, a text �le that willcontain an integer identi�er for each process, the name of the host machine where the processis to be executed, and the full pathname of the executables the user wants to execute onthat host. The control process uses this data to spawn the appropriate component processon the machine indicated by the user. Every spawned process which executes the applicationspeci�ed by the user invokes an initialization routine calledmyinit(myid, numprocs, argv,argc). Here, myid speci�es the integer identi�er of the process, numprocs speci�es the numberof processes involved, and argc and argv provide the process with the network address detailsof the control process. This routine binds the process to a port, and then forks a child

www.manaraa.com

9
user

control process

P0

P1

Pn

Participating process

: Application communication messages

: Init messages from control process

: Messages from component processes to control

Figure 2: Proposed Model for Project Implementationprocess, forming an underlying sublayer, with which it establishes a Unix based pipe interface.This layered architecture separates implementation speci�c details from the application layer,and allows ease in writing application programs based on simple API calls. The sublayercommunicates with the control process in the following sequence.{ The network address details of the control process are obtained by each process duringstartup as arguments.{ The sublayer sends the local network address details, which include the process IP ad-dress and port number, to the control process.{ The control process collects the network address details of all the participating processes.

www.manaraa.com

10{ The control process sends this information to each process.{ Every process stores this information in a special data structure from which the infor-mation can be retrieved whenever required.{ On receiving the collection of addresses and assimilating it, every process sends thecontrol process an acknowledgement.{ After all such acknowledegments are received, the control process sends each process amessage, which indicates that all the processes have been initialized and are ready tocommunicate.A process in the computation can be terminated by invoking the routine myclose(), whichinforms the sublayer of its termination and closes the pipe interface to the sublayer to disallowfurther communication with the sublayer. After the computation is done, depending onthe protocols used by the application, the user can view NFS mounted �les that containprotocol speci�c execution details, which will be discussed in the following sections. Theuser can also view a �le containing the dump of the vector clock and the Lamport logicaltimestamp information [11]. These �les can be used for trace visualization of the executionof a distributed computation.5.2 Message Passing1. Problem DescriptionCommunication in a distributed application is provided by message passing. The basic mes-sage passing primitives are : synchronous, where blocking send and blocking receive are usedfor the communication, and asynchronous, where a non-blocking send and blocking receiveare used. A blocking call requires the calling process to wait until either the communication

www.manaraa.com

11is completed or a failure is reported. A non-blocking call allows the application to proceedwhile the underlying communication sub-layer takes care of the communication. The messagepassing routines can be deterministic, where the sender and the receiver know the processeswith which they will communicate, or nondeterministic, where the sender can send to any-one within a group of processes, and the receiver can receive from anyone within a groupof senders. The nondeterminism makes the communication complicated, as the amount ofoverhead and the chances of error are increased. Problems like race conditions and deadlockcan also occur.The message passing primitives we implemented include: Deterministic Synchronous Send-Receive, Deterministic Asynchronous Send-Receive, Nondeterministic Synchronous Receive,and Nondeterministic Asynchronous Receive. The asynchronous receives are blocking in ourimplementation. Use of nondeterministic send is unusual, and hence is not being providedas a part of the project. The users have been provided with a set of routines which can beused to perform the desired communication. We are also providing the users an option touse reliable or unreliable message passing. Furthermore, users have access to Lamport logicaltime and vector time [11]. This will enable them to correlate to the classroom examples andgenerate execution traces when required.2. Implementing the Message Passing PrimitivesWe have provided an abstraction layer on top of the original Unix communication routinesusing UDP/IP with the Berkley socket network interface. This involved writing new routinesto carry out the functionalities of the message passing routines we are implementing. Bothreliable and unreliable routines are provided. Reliability in the message passing is providedusing acknowledgments, timeouts, and retransmission. Special primitives have been provided

www.manaraa.com

12to allow the user to change the reliability of a channel. Following is the description of availablemessage passing routines.i. syncSend(receiver id, datatype, count, message) performs the synchronous sendtransfer of the message. A corresponding syncRecv(sender id, datatype, count,message) routine, which performs the synchronous receive, is also provided. Here,receiver id speci�es the identi�er of the receiving process. For nondeterministic receive,sender id in the receive routine is set to negative one(-1). Currently, the data typessupported are integer, character, oat and double. On successful completion, the receiveroutine will return the identi�er of the process with which the communication took placevia sender id, and the data received via the bu�er pointed by message.ii. asyncSend(sender id, datatype, count, message) performs the asynchronoussend of the message. This is a non-blocking routine. A corresponding asyncRe-ceive(sender id, datatype, count, message) routine is provided. In our imple-mentation, the asynchronous receive routine is blocking. The parameters have the samefunctions as described above.iii. A routine ChangeReliability(channelId, value) is provided that can be used tochange the reliability of a channel. The user can specify the channel and a value between0 and 100 for the probability of the delivery of a message along that channel, where 100is the maximum probability of the message being sent. The default value is 100. Thisfunctionality is required, as the student applications are often designed for unreliablechannels, but are generally executed on networks which have high reliability.iv. The message passing routines implemented maintain vector and Lamport logical times-tamp information. This vector and Lamport logical timestamp information is limited

www.manaraa.com

13currently to track only the sending and receipt of messages. This information is availableto the user at the end of computation in a prede�ned �le. The user is also provided witha routine GetCurrentTimeStamps(), to get the current information. This routinetakes as an argument a character pointer in which the timestamps are returned to theapplication layer.3. Interaction with SublayerThe user can use the above routines to communicate with the remaining processes participat-ing in the computation. When the user calls the send routines, the data is �rst packed intoa character array. In the case of asynchronous send, the reliability of the channel is checked�rst. If the reliability is less than 100, the probability of sending the message is calculated byspecial functions: CheckReliability(channelid) and ipCoin(reliabilityvalue), depend-ing upon which the message is either dropped, i.e. control is returned back to the application,or further action is taken. Multithreading has been used to provide the asynchronous natureof the communication. Control is returned back to the application, while the thread carriesout the remaining functions. In the case of synchronous send, multithreading is not used. Thepacked message is conveyed to the the sublayer along with the action to be taken on it. Thesublayer attaches the necessary headers needed for reliable communication, such as the typeof message, the sequence number and length of data. The new Lamport logical timestampand the vector timestamps are calculated, and attached as a header. Acknowledgement andtimeouts are used for reliable message passing. Success or failure is returned to the functionin the application layer or the thread, which is handling the send.When application data is received by the sublayer of a process, it is stored in a special queuestructure by the sublayer. When the application requests data, the details are checked against

www.manaraa.com

14the messages already in the queue. If the data is available, the header is stripped o�, nec-essary updates are made, and the actual data is delivered to the application. Otherwise,the application is made to wait until such a data is received. Before delivering data to theapplication, the data is converted to the data type needed by the application. Timeouts areused to prevent permanent blocking, and an error is returned to the application.5.3 Basic ProtocolsThe following sections describe the basic protocols that are taught in the class, and our imple-mentation that will aid in the students understanding of the subject. The objective of the designpolicy we followed was to provide a base on which additions could be done easily to extend thefunctionality of the tool. The implementation subsection for each protocol is itemized according tothe sequence followed in the protocol execution, from the perspective of the user.5.3.1 Global Snapshot1. Problem DescriptionA global snapshot is a state of the distributed system that could have occurred. Problemslike stable property detection in distributed systems can be solved by using these snapshots.Examples of stable properties are \the computation has terminated", \the system is dead-locked", and \all tokens in the ring are lost". Global state thus obtained can also be used forcheckpointing. Thus, understanding global states and the protocols devised for their detec-tion are fundamental to reasoning about distributed systems. As mentioned in the previoussections, the task of taking the snapshot is complicated by the nature of distributed systems.Chandy and Lamport devised a simple means for taking a distributed snapshot [1].

www.manaraa.com

15
Channel

Process

C

Pi Pj

i

CjFigure 3: A Single Token Conservation System2. A Brief Description of Chandy, Lamport's ApproachThe system consists of processes P1; :::; Pn, connected by channels C1; :::; Cm. Each processrecords only its own state, and the state of the incident communication channels, to formthe global state. The channels are assumed to be unidirectional, reliable, and FIFO. Theglobal state detection algorithm is to be executed concurrently with the user application,and is superimposed on the underlying computation without interfering with it. Chandy andLamport used a single token conservation system to motivate their protocol, and provide aguideline for its implementation.If process Pi and process Pj are connected by channel Ci, the important restrictions in �ndingthe states to obtain a global snapshot are outlined as follows.{ If n is the number of messages sent along a channel Ci before process Pi's state isrecorded, and n0 is the number of messages sent along Ci before the state of Ci isrecorded, then the recorded global state is consistent only if n is equal to n' .{ Similarly, if m is the number of messages received along a channel Ci before the state ofa process Pj is recorded and m0 is the number of messages received along Ci before Ci'sstate is recorded, then the recorded global state is consistent only if m is equal to m'.{ In every state, the number of messages received along a channel cannot exceed thenumber of messages sent along that channel, n � m0 and n � m.

www.manaraa.com

16So, the state of channel Ci that is recorded must be the sequence of messages sent along thechannel before the sender's state is recorded, excluding the sequence of messages receivedalong the channel before the receiver's state is recorded.3. ImplementationThe user is provided with routines which will enable him to take a snapshot of a distributedcomputation. Currently a single snapshot can be taken.(i)The following two routines need to be called before calling the initialization routinemyinit().These enable the state of the process to be found dynamically.{ InitProcessVar() sets the pointers to variables that are used by the process. The valueof these variables denote the state of the process. To record the process state, the userwill have to make appropriate changes to the routine. The speci�c guidelines to do sohave been provided in the source code for the routine.{ SetSnapIndicator(value) where value is a pointer to an integer that the user providesas an input to the routine. This acts as an indicator for the snapshot completion.(ii)At some point in the computation, one of the processes can start taking the snapshot byinvoking a routine StartSnapshot() provided for this task. Care has to be taken that onlya single process makes such a call. The marker sending and receiving rules, described above,are followed while taking a snapshot.(iii)The application is signaled asynchronously to get the process state and to indicate thecompletion of the snapshot using the indicator set by the routine SetSnapIndicator().(iv)The process and channel state values, along with the vector timestamps of the receipt ofthe markers, are dumped to a prede�ned �le at the termination of the computation. Thesedetails will provide the user with the global snapshot, and also a provision to check the validity

www.manaraa.com

17of the snapshot.4. Interaction with the SublayerWe have provided a mechanism by which the snapshot can be taken dynamically and trans-parently to the application execution. When a process starts taking the snapshot by callingStartSnapshot(), it noti�es the underlying layer to do so, and sends the process state to it.Markers are sent to all participating processes, and control is returned back to the applica-tion. When a marker is received by any process for the �rst time, the application is signaledasynchronously to obtain the process state. A dedicated pipe interface is used for exchangeof data. Interrupt SIGUSR1 is trapped for signaling purposes. The application is allowedto then perform normal execution. After the �rst marker, the sending and receiving of themarkers is taken care of by the sublayer, transparent to the application. On the receipt ofa marker, the sublayer records the state of the channel as the number of messages receivedalong that channel after the �rst marker was received. It also records the vector timestampof the marker receipt. After the markers are received on every channel, the application is sig-naled aynschronously regarding the completion of the snapshot using the same pipe interfaceand signal described above. At the termination of the distributed computation, every processdumps the state data into a prede�ned �le, which provides the global snapshot.5.3.2 Mutual Exclusion1. Problem DescriptionIn any multiprogramming environment where resources need to be shared, critical sectionprocessing is an important aspect. It is necessary to see that only one process accessesthe resource at a time to avoid conicts and corruption of data. Synchronization achievedby mutual exclusion attains utmost importance in distributed systems, as commonly many

www.manaraa.com

18processes are trying to access shared resources. Within single machine systems, mutualexclusion is achieved using semaphores and locks. However, since only message passing isused for information exchange, the techniques used in sequential programs are di�cult toimplement in distributed systems. We have implemented Ricart and Agrawala's algorithm[10]. The protocol is symmetric, as the same algorithm is executing on each node, and itrequires no shared memory. This algorithm provides an optimal solution for the number ofmessages sent and uses only 2*(N- 1) messages between the nodes, where N is the number ofnodes in the system. The previous similar work done for mutual exclusion by Lamport used3*(N-1) messages per critical section invocation [4]. In addition, the time required to obtainmutual exclusion using Ricart and Agrawala's protocol is optimal. The underlying networkis assumed to be error-free, and the nodes are assumed to operate correctly.2. Brief Description of Ricart and Agrawala's ApproachA process which wants to enter the critical section sends a request containing the processidenti�er, and the timestamp for the request that is unique system-wide, to all the otherparticipating processes. Upon receipt of the request, a process can reply immediately or deferthe response until it leaves the critical section. Only after a process receives a reply fromall processes can it enter the critical section. The request grant or deferment is determinedusing the unique timestamp, according to the priority of the incoming request, depending onwhether the process has itself requested the critical section, and whether the process is itselfin the critical section [10]. When a process exits the critical section, it informs every otherprocess. Processes do not send an explicit denial message to the originator of the request,resulting in a reduction in the number of messages.

www.manaraa.com

193. ImplementationWe have provided routines that will enable a process executing the user application to achievemutual exclusion for critical section processing or for using a resource.(i) GetCriticalSection() is invoked when a process needs to execute in the critical section.The routine can be called after initialization. On invoking this routine, a request for criticalsection is sent to every process in the distributed application.(ii) The application waits until control is returned to it by the sublayer. The application isblocked until then. Once the control is regained, the process starts executing in the criticalsection.(iii) ReleaseCriticalSection() is called by the application process executing in the criticalsection, on completion of the critical section processing. This is to inform the participatingprocesses of the completion of the critical section execution.(iv) After the critical section is granted to a process, the identi�er of the process granted thecritical section, and the request number, are written to a prede�ned �le. If the critical sectionsare granted according to the algorithm, the �le will contain the data written by the processesin the order in which they were granted the critical sections, or were using the resource. Thecontents of the �le can be examined to check the sequence in which the processes obtainedthe critical section. Thus, the user can understand how mutual exclusion is achieved, as wellas the issues like message passing overhead that are related to achieving synchronization4. Interaction with the SublayerThe sublayer design of the project enables the protocol to be invoked by simple API calls,and execute transparent to the application layer. Whenever a process participating in thedistributed computation wishes to execute in the critical section, the application sends a

www.manaraa.com

20command to the sublayer. It waits until the critical section is granted. The sublayer intializesthe data structures to maintain a record of the replies received, and the requests that mightbe deferred. The unique timestamp is deduced using a variable initialized at startup, andupdated at every request sent and obtained. The request is sent to all the processes usingthis sequence number. Whenever a reply is received by the sublayer, it checks to see if itis a duplicate. Otherwise the reply count is incremented, and the necessary data structuresare updated. After all the replies are obtained, the sublayer writes the request number andprocess identi�er to the designated �le, and sends a success value to the application. Theprocess can then execute in the critical section. If a request is received while the processis requesting the critical section, or is executing in the critical section, then the appropriatedecision to defer the request is taken by the sublayer, depending on the request number andthe process identi�er number. A record of any deferred requests is kept in a special datastructure. If the process is neither in the critical section nor is requesting the critical section,a reply is sent immediately to the requesting process. Once the process �nishes executing inthe critical section, it sends a command to the sublayer to notify the remaining processes ofthis change. The sublayer then sends a reply to any process that it had deferred a reply to, andreturns control back to the application. Any protocol related messages from other processesare received and handled only by the sublayer. This provides the necessary abstraction neededfor the transparent execution of the application.5.3.3 Termination Detection1. Problem DescriptionIn certain distributed computations, a process is considered to be in one of two states: active,in which it is doing some useful computation, or passive, in which it is either idle or has

www.manaraa.com

21terminated. A process becomes passive on completion of its task. Only active processes cansend application messages. The receipt of an application message triggers a passive node totransition to the active state. The state in which all nodes are passive and no applicationmessages are in the channels is stable, and the distributed computation is said to have ter-minated. The lack of a common clock, and the di�culty in determining the global state of adistributed application, make it di�cult to detect the termination of distributed and parallelcomputations. In sequential programs, termination detection is an unheard of problem. Thetermination detection problem is well known in the �eld of parallel programming as the bar-rier synchronization problem.The problem of termination detection is a good introduction to the topic of distributed sys-tems. It is simple and illustrates the problems of distributed systems programming. We haveimplemented the distributed termination detection protocol developed by Dijkstra, along withFeijen and Gasteren, which uses synchronous message passing [2]. The solution provided bythem is simple, elegant, and easily understood.
P4

P3

P2

P1 probe

message

turns black

P0

Processes in the application connected in a ring

Figure 4: An Example For Termination Detection Algorithm

www.manaraa.com

222. Brief Description of the Approach and the InvariantsFor the purpose of transmitting messages associated with the detection of termination, pro-cesses are connected in a ring fashion as shown in Figure 4. Initially all processes are passive;when the computation is initiated, the processes become active. The termination detectionprotocol is initiated by process P0 using a special message called a `probe', which it sendsto process PN�1, where N is the number of processes in the system. When a process Pi,i > 0 receives the probe, Pi propagates the probe to process Pi�1, after Pi becomes passive.Process P0 transmits the probe to Pn�1. A passive process that has propagated the probecould become active when it receives an application message. To accomodate this fact, theprobe and each process are labeled either white or black. When Pi is black, this indicates thatPi has sent a task message to a process Pj , where j > i. P0 initiates termination detectionby sending a white probe and making itself white. If a process Pi that holds the token isblack, Pi will set the probe color to black before sending the probe to process Pi�1. If Pi iswhite, the probe is passed unchanged. After Pi passes the probe to Pi�1, Pi becomes white.A black probe returned to process P0 indicates that the probe must be circulated once more,as some of the processes may still be active. In this case, P0 will �rst make itself white, andthen transmit another white probe. Upon receipt of a white probe, a white P0 will declaretermination.3. ImplementationThe implementaion provides the user with routines that can be used to start the detectionof termination of a distributed computation. The termination detection protocol is superim-posed on the application.(i) StartTermDetect() is called by the process P0 to start the termination detection pro-

www.manaraa.com

23tocol. This results in the transmission of the probe message as described in the previoussection.(ii)ChangeMyState(state) is invoked by a process to change its state to passive. Thisroutine informs the sublayer of the change in state.(iii)The routine myclose() is called by the application layer of a process to inform the sub-layer that the processing has been completed. The application layer is then terminated. Theconnection to the sublayer is closed to prevent any kind of communication between the twolayers.(iv) When termination of the distributed system is �nally detected, each process dumps thesequence of the recorded process and probe colors to a prede�ned �le. This �le will providethe students a good guide of how the detection algorithm was executed and the sequence ofcolor changes that occurred during the execution.(v) If a process is passive when termination is detected according to the protocol description,the application layer is terminated by a SIGKILL signal.(vi) Our tool will be running distributed computations. There was a need to detect the ter-mination of any such computation. The termination detection protocol described above wasused for this purpose. It is started by process P0 after it gets a message from the controlprocess that all the processes have been initialized.4. Interaction with the sublayerOnce process P0 receives the message from the control process that all the processes have beeninitialized, P0 invokes the routine StartTermDetect() to inform its sublayer to transmit awhite probe, and change the process color to white. The protocol execution is thus started.During the computation, if the routine to change the state of the process from active to passive

www.manaraa.com

24is invoked, the sublayer makes a note of this change. When a data message is received,the sublayer changes the state of a passive process to active, while the state of an activeprocess is left unchanged. It also makes a note of the state change when it is informed ofthe termination of the application process. Every time a data message is sent by the process,the sublayer changes the color of the process to black. When the probe is received by thesublayer, it �rst checks the state of the process. If active, the sublayer keeps the probe untilthe application layer noti�es the sublayer of a change in process state to either passive orterminated. If the process is passive or has terminated, the sublayer �rst changes the colorof the probe according to the rules [2], transmits the probe, and then changes the processcolor to white. The sublayer keeps track of the process color changes, as well as the receivedand sent probe color. The routines used for keeping track of the probe and process colorsare SetProbeColor(), GetProbeColor(), SetProcessColor() and GetProcessColor()respectively. Process P0 detects the termination of the distributed computation as describedpreviously. If termination is not detected, P0 retransmits a white probe, after changing itscolor to white. When termination is �nally detected by process P0, it sends a special messageto all the processes. On receiving this message, the sublayer of each process calls a routineDoFileWriting(), which in turn invokes routines to write the timestamp details, the probe-process color changes, and any other protocol speci�c data to �les, after which the child exits.If termination is detected when the process is passive, the sublayer sends a SIGKILL signalto the application layer and closes the pipe interface to prevent any message exchange.5.3.4 The Byzantine Generals Problem and Agreement Protocol1. Byzantine Generals ProblemThe Byzantine army had to decide on an attack plan during a war. The generals could com-

www.manaraa.com

25municate using only messengers. The messengers were reliable. After observing the enemy,the generals had to decide upon a common plan of action. However, a small number of traitorgenerals could prevent the remaining generals from reaching a majority decision. This couldbe done by corrupting the data they sent to other generals, or by not sending any data at all[9]. Hence, the problem boils down to ensuring the following interactive consistency condi-tions:IC1 All loyal generals will agree on the same value.IC2 If the commanding general is loyal, the loyal generals will agree on his value and obeythe order he sent.Applying the situation to distributed systems, the Byzantine's problem becomes one of achiev-ing a consensus. Processes begin with some initial value and must agree on the same outputvalue, despite failures. Due to failures, inputs to processes may be arbitrary. Reaching a con-sensus is di�cult in a distributed system, because communication is only through messagepassing, and it is di�cult to detect correctness of an input. Consistency validation of a valueis needed as some process may be faulty, making it di�cult to determine if the value receivedis uncorrupted. This is a simple understanding of the consensus problem. The ability ofobtaining consensus despite failures is required in many applications, like fault-tolerant clocksynchronization. Other examples are maintaining replicated data, monitoring distributedcomputations, and detecting faulty processes.We have implemented the solution to the Byzantine Generals problem proposed by Lamport,Shostak, and Pease, called the Oral Message Algorithm [5]. They proved that an agreementcannot be reached if M � 3t, where M is the total number of generals, and t is the numberof traitors.

www.manaraa.com

26

P1

P2

P3

P0

Commander

lieutenant

8
8

8

faulty process

8

8

8

8
3 no message

Figure 5: An Example For Byzantine Generals Protocol Algorithm2. Some Considerations for the AlgorithmA distributed system consisting of N processes connected by channels is considered. Thefollowing assumptions are made.1] Message delivery is reliable.2] When a message is received, its sender can be determined reliably.3] If a message is not delivered, its absence can be detected.4] The default value is zero.5] There are no spurious messages.We denote the oral message solution by BG(k) [9]. Figure 6 outlines the algorithm usedfor reaching the agreement. Here, BG Send(k; v; l) denotes broadcast by a process, andBG Receive(k) denotes receipt of the value by a process, where k is the number of faultyprocesses that can be tolerated, v is the private value to be broadcast or rebroadcast by aprocess, and l is list of processes who have never broadcast the value v.

www.manaraa.com

27

i

 BG_Send(0,v,l)

 BG_Receive(0)

BG_Send(k,v,l)

BG_Receive(k)

 Use the value sent by the commander, or zero if no message is received.

 The commander broadcasts "v" to every lieutenant in "l"

 Send the value "v" to every process in the list "l".

 1] Use the value "v" sent by the commander, or zero if no value is received.
 2] BG_Send(k−1,v,l−P), where P denotes the process invoking BG_Send.
 3] Use BG_Receive(k−1) to receive v(i) for every process in l−P
 4] Return majority (v, v(1), ..., v(l−1)).

 among v1,v2,...,vn, or 0 if no majority exists.
 majority (v1, v2, ...,vn) demotes the method that returns the majority value "v"

i i

BASE CASE:

Figure 6: Algorithm For Byzantine Generals Agreement ProtocolThe BG(k) protocol is executed by each lieutenant process Pi recursively [5]. The remainingprocesses Pj � jl � Pij, form a list of values they received from every other Pj regarding thevalue Pi received from the general. A majority regarding the value Pi received from thecommander is found and stored in a list of such majority values. When the values of alllieutenant processes are obtained, a �nal majority value is found. Whenever a majority doesnot exist, a default value is used.3. ImplementationThe layered architecture we have implemented allows the concurrent execution of the protocol.(i) SetDecisionIndicator(value) is called by every process executing the user applicationbefore invoking myinit(), if the protocol is to be executed. Value is a pointer to an integervariable which the application uses to obtain the agreed upon value. This routine initializesthe necessary interface and variables needed for the protocol execution.(ii) The BGSend(value) routine that we have provided the user can be invoked on theprocess from which the user wants to begin the agreement protocol. The routine will cause

www.manaraa.com

28the broadcast of the value of the private variable obtained as a parameter to all the processesinvolved in the computation. Currently only integer values are being handled.(iii) The application is signalled asynchronously regarding the completion of the agreementprocess, and the value agreed upon is also sent to it. The default value when no majorityexists is zero.(iv) The list of majority values, the �nal majority decision, and the identi�er of the processmaking that decision are printed to a �le. The �le thus describes what value each processreceived, and how it arrived at the decision. The �le will help the students understand theexecution of the agreement protocol.4. Interaction with SublayerThe user invokes the agreement protocol for a private value of a process by calling the routineBGSend(value). This routine commands the sublayer to broadcast the value to all theparticipating processes. On receiving an agreement protocol message, the sublayer invokesBGReceive(newMessage). The receive procedure checks whether the message is from theintiating process or from any other process, and takes the action accordingly. Each processbroadcasts its version of the intiator's value. Once all such values are received, dependingon the number of processes, either the �nal decision is taken, or the values received fromother processes are broadcast on a round basis, where the round number is the processidenti�er number being currently handled. These broadcasts are made using the procedureBGSend(processid handled, value). The values received are collected, and the majorityfor each process is found using the procedure FindMajority(). After all such majority valuesare obtained, a �nal majority is calculated. The sublayer then signals the application that theagreement has been reached, and provides the application layer the value which is stored by

www.manaraa.com

29the signal handler routine in the pointer previously provided by SetDecisionIndicator().The interrupt SIGUSR2 and a dedicated pipe interface have been used for this purpose.Before sending the signal, the �nal majority value as well as the array of values used tocalculate this majority along with the process identi�er are printed to a �le.6 Future WorkWe have tried to implement a comprehensive system that can be used for course study. However,due to time constraints we could not implement certain features that will increase the utility ofthis tool. The various enhancements that can be implemented are described below.� Add other protocols to make a full edged distributed systems pedagogical tool software.� The implementation of Chandy, Lamport's snapshot protocol can be extended to make pro-vision for multiple snapshots.� The implementation for Byzantine Generals agreement protocol currently deals with integervalues and can be extended with some modi�cations to handle other data types also.� We have currently implemented the Byzantine Generals algorithm with the cases of fourand seven processes. These cases are the ones which are covered in class. The code can beextended to cover more cases, if need be, with some modi�cations.� The output results sent to the �les can be displayed in a GUI format for easier interpretation.� Time-space diagrams can be created using the Lamport logical and vector timestamp valuesthat are stored to �le.

www.manaraa.com

307 ConclusionsWith the increasing use of networks, distributed applications are gaining importance. The studentcommunity which takes courses in distributed systems is from a varied background. Many �ndit di�cult to understand the implications and issues faced while implementing such applications.The protocols and the message passing routines we have implemented as a part of our tool forma basic foundation for the understanding of distributed computations. This project will provide avery useful tool, not only for the professor to teach, but also for the students use to help in theirunderstanding of distributed system concepts. It will enable the students to visualize the issuesrelated to distributed application programming. The protocol execution dumps and the timinginformation will help them correlate to the material covered in class. Thus, we conclude that thetool we have implemented will be highly useful for distributed system course study.

www.manaraa.com

31References[1] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributedsystems. ACM Transactions on Computer Systems, 3(1):63{75, 1985.[2] E. Dijkstra, W. Feijen, and A. van Gasteren. Derivation of a termination detection algorithmfor distributed computations. Information Processing Letters, 16:217{219, 1983.[3] H.Jakiela. Performance visualization of a distributed system: A case study. IEEE Transactionson Computers, 28(11):30{36, 1995.[4] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communicationsof the ACM, 21(7):558{565, 1978.[5] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals problem. ACM Transactionson Programming Languages and Systems, 4:382{401, 1982.[6] Minas Lamprou and Ioannis Psarakis. Visualization of Randomized Distributed Algorithms,Simjava. http://www.cs.bham.ac.uk/teaching/examples/simjava/, 2000.[7] Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cosnard et.al., editor, Parallel and Distributed Algorithms: Proceedings of the International Workshop onParallel and Distributed Algorithms, pages 215{226. Elsevier Science Publishers B. V., 1989.[8] Parsis network tools. Didyma. http://www.xs4all.nl/ houtriet/, 2000.[9] T.Johnson R.Chow. Distributed Operating Systems and Algorithms. Addison-Wesley, 1997.[10] G. Ricart and A.K. Agrawala. An optimal algorithm for mutual exclusion in computer net-works. Communications of the ACM, 24(1):9{17, 1981.[11] R.Schwarz and F.Mattern. Detecting a causal relationships in distributed computations: Insearch of the holy grail. Communications of the ACM, 19(5):279{285, 1976.[12] Wolfgang Schreiner. DAJ: Toolkit for Distributed Algorithms Simulation in Java.http://www.risc.uni-linz.ac.at/software/daj/, 2000.

